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Abstract

Partial least squares regression (PLSR) modelling is a statistical technique for correlating datasets, and involves the 
fitting of a linear regression between two matrices. One application of PLSR enables leaf traits to be estimated from 
hyperspectral optical reflectance data, facilitating rapid, high-throughput, non-destructive plant phenotyping. This 
technique is of interest and importance in a wide range of contexts including crop breeding and ecosystem moni-
toring. The lack of a consensus in the literature on how to perform PLSR means that interpreting model results can 
be challenging, applying existing models to novel datasets can be impossible, and unknown or undisclosed assump-
tions can lead to incorrect or spurious predictions. We address this lack of consensus by proposing best practices 
for using PLSR to predict plant traits from leaf-level hyperspectral data, including a discussion of when PLSR is 
applicable, and recommendations for data collection. We provide a tutorial to demonstrate how to develop a PLSR 
model, in the form of an R script accompanying this manuscript. This practical guide will assist all those interpreting 
and using PLSR models to predict leaf traits from spectral data, and advocates for a unified approach to using PLSR 
for predicting traits from spectra in the plant sciences.
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Introduction

Plant leaf traits are the physiological, morphological, or bio-
chemical characteristics of plants measured on individual leaves 
(Violle et al., 2007). Leaf traits play an important role in plant 
resource acquisition and allocation, with broad impacts on pri-
mary production, community assembly, and plant responses to 
climate change (Reich et al., 1997; Wright et al. 2004; Myers-
Smith et al., 2019; Kattge et al., 2020; Thomas et al., 2020). The 

use of leaf traits in ecological and evolutionary research has 
seen a dramatic increase in recent years, improving our under-
standing of vegetation from the scale of the individual plant 
to that of ecosystems (Woodward and Diament, 1991; Violle 
et  al., 2007; Bjorkman et  al., 2018). Furthermore, measuring 
leaf traits is a critical element of plant phenotyping, including 
phenotyping for crop breeding and precision agriculture 
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(Reynolds and Langridge, 2016). However, progress is hin-
dered by the expensive and time-consuming acquisition of 
traits from in situ leaf harvesting and subsequent laboratory 
analysis (Cornelissen et  al., 2003). Laboratory processing of 
structural traits such as leaf mass per unit area (LMA) can take 
days to weeks to complete, while processing leaf samples for 
biochemical and physiological traits may take weeks to months 
and is also costly, requiring specialist equipment and expertise. 
To fully extend the potential of trait-based studies, robust and 
non-destructive methods for effectively identifying leaf traits 
are critically needed (Myers-Smith et al., 2019).

Using leaf reflectance spectra to predict leaf traits is a prom-
ising alternative to traditional measurements, as reflectance can 
be quickly and efficiently measured using spectroradiometers. 
A  leaf reflectance spectrum results from the light-absorbing 
and scattering properties of the leaf, and is highly modified 
by the concentration of light-absorbing compounds (photo-
synthetic pigments, water, cellulose, lignin, starch, protein, and 
macronutrients) and the internal structure of leaves which 
determine light scattering (Kumar et  al., 2002; Asner, 2008; 
Serbin and Townsend, 2020). As leaf structure and chemical 
composition vary with species, age, environment, and stress, 
these light-absorbing and scattering properties change in con-
cert (Yang et al., 2016; Wu et al., 2017).

Typically, a reflectance spectrum contains a large array of 
variables, namely reflectance at different spectral wavelengths, 
ranging from several hundred to thousands depending on the 
spectral resolution and the range of measured wavelengths. 
These wavelengths typically include the visible (VIS, 380–
700 nm), near infrared (NIR, 700–1100 nm), and short-wave 
infrared (SWIR, 1100–2500 nm) regions, as covered by a full-
range spectroradiometer. While the spectrometer wavelength 
resolution will be likely to vary between detector regions, the 
spectral resolution is usually 3–5 nm in the VIS, and 6–12 in 
the NIR and SWIR bands, and the data are then interpolated 
to a 1 nm resolution. Given this large number of predictor vari-
ables, classic linear regression modelling cannot be used due to 
the problems of ‘non-unique solutions’ and ‘overfitting’ (Geladi 
and Kowalski, 1986; Wold et al., 2001). Partial least squares re-
gression (PLSR) was created to handle both the collinearity 
among predictors, in this case the different wavelengths of a 
reflectance spectrum, and the larger number of predictor vari-
ables than trait observations. PLSR projects the highly correl-
ated predictor variables to a small number of latent variables 
and at the same time maximizes the correlation between the 
response and latent variables (Geladi and Kowalski, 1986; Wold 
et  al., 2001). This technique has been shown to be effective 
for handling spectral data (Serbin et  al., 2012, 2019; DuBois 
et al., 2018; Wang et al., 2020) and has been successfully im-
plemented for many types of continuous traits across a variety 
of growth conditions, including glasshouses, farms, and natural 
ecosystems (Ely et  al., 2019; Meacham-Hensold et  al., 2019; 
Wu et al., 2019). These traits include leaf structural traits, such 
as LMA (Serbin et  al. 2019); biochemical traits, such as leaf 

nitrogen, protein, sugars, starch, and lignin (Ely et al. 2019); and 
physiological traits, such as the maximum carboxylation rate 
of Rubisco (Vc,max) and the maximum electron transport rate 
(Jmax) (Meacham-Hensold et al., 2019; Wu et al., 2019). These 
implementations of PLSR have largely improved our means 
for monitoring plant growth and plant physiological change 
under environmental stress, as well as the broad trait variation 
across vegetation types.

Previous work in the fields of chemometrics, medical sci-
ences, and sociology has provided a detailed description of the 
mathematical aspects and advantages of PLSR over alternative 
approaches, therefore we will not address this here (Martens 
and Martens, 2000; Wold et  al., 2001; Krishnan et  al., 2011; 
Sawatsky et al., 2015; Shmueli et al., 2016). However, there is 
currently no clear guide on how to predict plant traits from 
hyperspectral data, and particularly how to apply the PLSR 
technique (Barnes et  al., 2017; Polley et  al., 2020; Villa et  al., 
2020, Preprint). Whilst there are plenty of specific examples of 
PLSR being used to predict traits from spectra, we lack a gen-
eral overview of PLSR for plant ecology.

Furthermore, there are a variety of approaches available for 
leaf trait and hyperspectral data collection, including choices of 
instrumentation, measurement procedures, and quality control, 
as well as different approaches for developing and validating a 
PLSR model, with steps including sample selection, handling 
imbalanced data and outliers, determining the number of 
components, and model validation. There is also a wide 
choice of PLSR software, such as ‘pls’ (R software environ-
ment), ‘plsregress’ (Matlab), ‘sklearn’ (Python), ‘PLS procedure’ 
in SAS, Statistica, and SPSS; furthermore, there are many dif-
ferent outputs, including figures and indices of performances. 
Collectively, this overwhelming variety of potential pathways 
for analysis is hindering the development of a coherent ap-
proach that can enable clear comprehension and comparison 
of results and the sharing and application of PLSR models by 
the community. Finally, for the researcher hoping to begin ap-
plying the PLSR technique to new questions, the absence of 
an established best-practice method leaves the uninitiated user 
unsure of how to begin working with this powerful technique.

Here we present a best-practice ‘hands-on’ guide to perform 
PLSR modelling for estimating plant traits from leaf-level 
hyperspectral data, and provide clear guidance on accuracy as-
sessment and model uncertainty. We explain each part of the 
PLSR workflow from data collection to model building, valid-
ation, and application (Fig. 1), with key definitions provided in 
Box 1. We first examine the coordinated data collection of leaf 
traits and leaf spectra and suggest best practices. We then pro-
vide a tutorial guide through an example of a PLSR model-
ling scenario accompanied by a detailed, open-source R script. 
Finally, we discuss common pitfalls when using PLSR and tips 
for applying PLSR models to novel data. We therefore present a 
clear and practical guide for readers, reviewers, and researchers; 
advance knowledge of PLSR and its application; and provide a 
toolkit for performing one’s own best-practice PLSR.
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Recommendations for collecting leaf 
spectra and trait data

In order to build a PLSR model with the best possible pre-
dictive power, data collection must be undertaken with 
the goal of assembling a dataset that captures the potential 

variation in the plant traits of interest. This involves sampling 
across the broadest possible trait space and using a spectral 
collection method that will accurately capture the trait; for 
some traits, timing and temperature are also factors to con-
sider as outlined below. Following Violle et  al. (2007), we 

Fig. 1.  Use of partial least squares regression (PLSR) for predicting leaf traits from leaf spectra. Left-hand side: the model is built and validated using 
a range of species, leaf ages, or experimental treatments to fill the desired trait space (in this example, we show a range of species). Spectra and traits 
are measured for each leaf of interest. The resulting dataset is split into calibration data and a smaller subset of validation data (Step 7 in the example R 
script), and used to build and validate a PLSR model as detailed in the text and accompanying R script. Once the dataset is split, the optimal number 
of components (Step 10 in the example R script) are determined, and the calibration model is developed (Step 11) and validated (Steps 11 and 12). In 
addition, an further uncertainty permutation analysis (Step 14) can be conducted to quantify the uncertainty in trait estimation. Right-hand side: new 
samples are selected from within the trait space used to build the model (in this example, the species range). Spectral data are collected for each leaf of 
interest. PLSR is performed using the model coefficients from the validated model in order to predict the trait of interest for each new spectrum.
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define traits as empirically measured structural, biochemical, 
or physiological properties of leaves; this excludes properties 
such as the normalized difference vegetation index (NDVI) 
or output from a SPAD chlorophyll meter, since it is not 
meaningful to use leaf reflectance to predict properties that 
are themselves derived from reflectance within the same 
wavelength range.

Collection of leaf trait data

Non-linearities in plant traits mean that extrapolation of pre-
diction beyond the range of measured values cannot be con-
sidered reliable (Schweiger, 2020). Therefore, a measurement 
plan should be devised to fill the trait space in the calibration 
data that is anticipated from the combinations of experimental 

Box 1.   Definitions

Modelling

•	 Calibration: the process of training the model, using the calibration dataset. In models which are 
validated by cross-validation, typically 80% of the data are used to generate the model following a 
random stratified split. In models which are validated independently, 100% of the original data are used 
to generate the model.

•	 Collinearity: the case in which predictor variables are highly correlated, or not independent.
•	 Jackknife: a statistical resampling technique in which one sample is left out and the population parameter 

of interest is recalculated. The resulting mean of the resamples is the jackknife parameter estimate.
•	 PLSR (partial least squares regression): a regression technique for building a statistical model relating 

matrices of x and y variables.
•	 PRESS: predicted residual error sum of squares. The sum of squares of the prediction residuals for the 

observations used to validate the model; this provides a summary of model performance.
•	 Regression coefficients: the final linear regression coefficient values used to estimate the dependent 

variable Y from the elements of the predictor matrix X (spectral data). One of the core outputs of PLSR 
modelling is the regression coefficient vector containing the values to multiply each wavelength by (then 
add together plus the intercept) to estimate the dependent trait variable Y.

•	 Residual: the difference between the observed value and the predicted value.
•	 Trait model: a set of model coefficients that will allow the prediction of a leaf trait from a leaf reflectance 

spectrum.
•	 Validation: the process of testing the model. Cross-validation uses the split of the dataset not used in 

calibration, typically the remaining 20%. Alternatively, independent validation may be performed using a 
second (independent) dataset.

•	 VIP (variable influence on projection): a measure of the importance of a given predictor variable on 
prediction of a response variable. A  value >0.8 is typically used as a cut-off for a highly significant 
predictor variable.

Traits

•	 Leaf trait: empirically measured physiological (e.g. Vc,max), morphological (e.g. LMA), or biochemical (e.g. 
starch) characteristics of plants measured on individual leaves.

•	 Trait space: the range of possible values for a trait across experimental variables such as species, leaf 
age, drought, nutrient treatments, or genetic variation.

Spectroscopy

•	 Hyperspectral data: spectral data collected over many contiguous narrow spectral bands (e.g. 1 nm), 
over multiple spectral regions (e.g. visible to short-wave infrared).

•	 Leaf reflectance spectra: a leaf reflectance spectrum describes the light-absorbing and scattering 
properties of the leaf.

•	 Spectral noise: variation in signal response resulting from limitations of accuracy and precision of the 
instrument used to collect spectral data.
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variables under consideration, such as species, leaf age, drought, 
nutrient treatments, and genetic variation (Fig. 2). For the pur-
pose of building a new trait model, this can be achieved by 
selecting species that are known to have diversity across the 
target traits, or by manipulating the environment or plants in a 
way that will result in diversity of the trait of interest.

The minimum number of paired spectra and measured trait 
samples required to build a robust model is somewhat dependent 
on the nature of the trait itself. Enough samples must be collected 
to provide calibration across the desired data range for predicting 
traits. Typically, models with good predictive capacity can be built 
using ~100 samples (Kleinebecker et al., 2009; Ainsworth et al., 
2014; Barnes et al., 2017; Girard et al., 2020). However, successful 
prediction of some traits may require several hundred samples, 
especially if the data are highly clustered or skewed. Construction 
of PLSR predictive models with >200 samples is not uncommon 
(Dechant et al., 2017; Yendrek et al., 2017; Silva-Perez et al., 2018)

Spectra and trait measurements should generally be made on 
the same area of leaf material. This principle, and the nature of 
the trait analysis, will dictate the order in which the spectra and 
trait measurements are made. Spectra should be collected prior 
to any destructive sampling of the leaf material. Special cases 
for which it is appropriate to measure the spectra after trait 
collection, or on analogous leaves, are discussed below. Given 
that spectral measurements represent the area in the leaf sensor 
field of view, the physical, chemical, or physiological traits of 
interest should also be calculated on an area basis.

Collection of leaf spectral data

A variety of approaches may be used to collect spectral data, 
including on fresh and dried leaf material. Here we focus on 
reflectance measurements of fresh leaves using a full range 

(350–2500  nm) spectroradiometer with a leaf clip or con-
tact probe attachment. The following section describes a 
basic protocol for measuring leaf-level spectroscopy; refer to 
Schweiger (2020) for consideration of different instrument 
types and further protocol details. While we focus on full-range 
examples, researchers will typically remove data below 450 nm 
or 500 nm and >2400 nm corresponding to increased sensor 
noise, and lower signal-to-noise ratio, and thus potentially 
adding erroneous information or noise into the PLSR mod-
elling. Moreover, the approaches we present are not specific to 
this spectral range and the PLSR method is also applicable to 
datasets with a reduced spectral range, such as within the VIS to 
NIR (400–1000 nm) range. In these cases, however, depending 
on the trait, the PLSR model performance may be reduced 
because the information provided in the other spectral wave-
lengths is missing (e.g. Doughty et al., 2011).

Most off the shelf spectrometer systems that are supplied 
with a leaf clip or plant probe will also have an internal, cali-
brated light source. If the researcher plans to use a custom light 
source, it is important to consider any issues related to light 
intensity and uniformity across the spectral wavelengths of 
interest, and adjust collection conditions appropriately (e.g. in-
tegration time). However, most spectrometer systems also pro-
vide a means for automatic integration that would also adapt 
to different light sources. This topic is beyond the scope of this 
work; we refer the reader to Jacquemoud and Ustin (2019) and 
expect that the data being used have been properly prepared for 
use with PLSR modelling following their recommendations.

Ideally, leaves should be measured in situ, or as soon as pos-
sible following removal from the plant. Temporary storage in a 
cool, dark place with appropriate humidity control will min-
imize metabolic changes in the leaf (Foley et al., 2006; Pérez-
Harguindeguy et al., 2013). It is important to ensure that the 

Fig. 2.  Filling the trait space. PLSR models may be used to accurately predict values of traits from spectral data within the trait space filled by the original 
model. Black circles indicate the original data used to build the model. Red triangles indicate novel data to which the model is being applied. (A) Filled 
trait space. The model was built using data covering a broad trait space, which covers the range of new data points. New data can then be reliably 
predicted. (B) Unfilled trait space. The model cannot reliably predict the values of new data outside the trait space used to build the model. The trait 
space occupied by the new data is indicated by red shading.
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leaf surface is dry before measuring and that all measurements 
are made on the same side of each leaf, usually the adaxial sur-
face. Some sample types will require additional preparation be-
fore recording spectra, such as creating mats for narrow leaves 
or needles that will not cover the field of view of the sensor 
(Noda et al., 2013; Kamoske et al., 2021), or measurement of 
leaf temperature to allow scaling of temperature-sensitive traits 
(Silva-Perez et al., 2018). It is also assumed that the researcher is 
familiar with the operation of their specific model of spectrom-
eter and has followed the manufacturer’s guidance on factory 
calibration, set-up, and warm-up procedures. For a complete 
treatment of this subject, see Jacquemond and Ustin (2019).

When the sample is ready, calibrate the spectroradiometer 
using a clean diffuse, 99% (or high reflectivity) reflectance 
standard. A common option is a LabSphere Spectralon diffuse 
reflectance standard (Lab Sphere, North Sutton, NH, USA). If 
the researcher would like to convert reflectance from relative 
reflectance to that corrected by the spectral response of the re-
flectance standard, it is important to record the serial number 
of the standard used so that a standard reference correction can 
be applied. This consists of multiplying each wavelength in the 
measured spectra by the reference standard calibration coeffi-
cient for that wavelength.

Once you have selected and recorded the standard, then take 
3–5 measurements of the area to be harvested for trait meas-
urement, avoiding irregular features such as midribs, prom-
inent veins, insect damage or epiphyll cover. In certain plant 
types, the trait of interest may also influence the section of 
leaf chosen for analysis. For example, graminoids have well-
characterized gradients of metabolites along the lamina that 
should be considered (Pick et al., 2011). Care should be taken 
to minimize the time that the leaf is exposed to the light source 
to avoid damage from excessive heat. The bottom part of the 
leaf clip, or the leaf background if using a contact probe, should 
be optically dark (e.g. less than ~3% reflective) across all wave-
lengths being measured to minimize background reflectance. 
Use of a white background may result in the measurement 
of undesirable transflectance; this also limits the extension to 
canopy-scale modelling or synthesis with other datasets. After 
each measurement, check that the recorded spectrum is rea-
sonable, with peak heights and positions as expected for the 
leaf type and water status (Serbin and Townsend, 2020). Poor 
quality measurements can arise from an incorrect reference 
measurement or improper placement of the leaf, including not 
filling the field of view, folding of the leaf, or not properly 
closing the leaf clip, leading to light leakage (Fig. 3). We recom-
mend that users familiarize themselves with the typical spectral 
signature of the species or variant of interest to establish what 
characterizes good spectra for their study before commencing 
spectral data collection. The routine use of calibration stand-
ards for collected spectra is important for improving compari-
sons between spectral data collected by different operators and 
systems, and to facilitate interoperability of PLSR calibrations 
between datasets.

To prepare the spectral data for model input, individual 
measurements should be reviewed and erroneous measure-
ments removed (Fig. 3). Spectral artefacts resulting from de-
tector overlap should be corrected, and the remaining spectra 
for each leaf sample should be averaged (Meacham-Hensold 
et  al., 2019) and labelled with a unique sample identifier. 
Similarly, the measured trait data should be assessed for quality, 
and erroneous or outlier measurements removed through the 
use of a standard technique such as boxplot or Cook’s distance 
before commencing PLSR.

Special considerations for physiological traits

Physiological traits, such as Vc,max, have been derived from re-
flectance in a wide range of species and growth conditions 
(Serbin et al., 2012; Yendrek et al., 2017; Silva-Perez et al., 2018; 
Meacham-Hensold et al., 2019; Wu et al., 2019). When modelling 
relationships between spectra and physiological traits, there are 
several additional considerations associated with the collection 
of reflectance data and expression of the physiological trait of 
interest. Measurement of leaf reflectance can result in damage to 
the leaf, particularly to sensitive physiological processes, so care 
must be taken to avoid overheating or over-illuminating the leaf 
(Serbin et al., 2012). In addition, some physiological traits have a 

Fig. 3.  Example leaf spectral data. The blue trace indicates a typical 
example of leaf spectral reflectance data; the red trace is an example of 
poor spectral data resulting from an error during measurement. These data 
are schematic, for illustrative purposes only. Spectral data shown here are 
from the range 500–2400 nm used in our PLSR example. Key regions of 
the spectrum are indicated with grey text and dashed lines (VIS, visible; 
NIR, near infrared; SWIR, short-wave infrared). The good example shows 
a peak in the visible spectrum relating to chlorophyll reflecting green light, 
then a strong increase in reflectance which should be between 35% and 
80% (ideally between 40% and 60%) and should be the highest peak of 
the entire spectrum. This peak is the first of three consecutive peaks in 
the NIR and SWIR regions between ~750 nm and 1400 nm followed by 
a sharp decrease. After 1500 nm, there are two wide, final peaks, each 
lower than the preceding peak. The poor example (slightly offset from the 
good example to facilitate interpretation) shows a strong deviation from 
the expected pattern in the NIR and SWIR regions including the second 
NIR peak being higher than the first peak, and then sharp decreases 
and deviations between 1000 nm and 1500 nm, but the remaining 
regions show the expected pattern. Further examples of poor spectra 
could include the initial peak being <35% or >80% reflectance, or other 
deviations from the good example shown here.
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strong temperature sensitivity, and changes in leaf temperature 
can also impact reflectance (Serbin, 2012; Khan et al., 2021), thus 
it is important to either minimize heating of leaves during re-
flectance measurements or to pair leaf temperature measurements 
close in time with reflectance measurements. Certain physio-
logical measurements can alter the leaf surface, for example when 
a sealant is used during gas exchange measurements to minimize 
leakage. The order of measurements will depend on the specific 
case, with the user considering the traits of interest to determine 
whether the reflectance measurement might adversely influence 
the physiological measurement, or vice versa. Whilst in an ideal 
scenario both measurements are made on the same region of the 
leaf, it is also possible to distribute measurements across the sur-
face of a large leaf, on a different leaflet of a composite leaf, or 
even on an analogous sample of the same phenological stage and 
orientation on the plant. Great care should be taken to ensure 
that equivalent areas or leaves are measured.

The scaling of measurements to a reference temperature 
should also be considered. For example, the predictive power 
and accuracy of PLSR models have been shown to be greater 
when the model is built using maximum carboxylation rates 
that have been normalized to 25 °C (Vc,max.25) (Silva-Perez et al., 
2018) rather than the Vc,max at measurement temperature, even 
though both approaches produce successful results (Serbin et al., 
2012). This may reflect the covariance between the biochemical 
and structural properties of the leaf that relate to the investment 
of resources in Rubisco including known (nitrogen, chlorophyll, 
and LMA) and unknown leaf traits that correlate with Vc,max.25 
(Kattge et al., 2009; Walker et al., 2014; Croft et al., 2017; Wu 
et al., 2019). Given the role of environment, especially growth 
temperature, in determining the investment in Rubisco (Ali 
et al., 2015; Kumarathunge et al., 2019; Smith et al., 2019) and 
the characteristics of other co-varying leaf traits, it is likely that 
the success of building PLSR models will be improved when 
the either the measurement temperature (Vc,max-based models) 
or chosen reference temperature (Vc,max.25-based models) is 
close to growth temperature. Leaf temperature should be re-
corded at the time of taking the spectral measurement if it is 
desired to scale Vc,max to leaf temperature. Leaf temperature data 
are also required to use spectra to estimate the temperature re-
sponse of Vc,max. In some cases, physiological parameters have 
been derived using species-specific kinetic constants (Silva-
Perez et al., 2018). We believe that this extra step is not neces-
sary given the intended use of the spectra–trait approach as a 
screening tool and believe that use of standard kinetic constants 
(Bernacchi et al., 2001) should be sufficient to develop effective 
PLSR models. Finally, we note that whilst Vc,max changes with 
leaf temperature, effects of leaf temperature on the prediction of 
structural traits such as LMA are small (Khan et al., 2021).

Special considerations for biochemical traits

Biochemical traits comprise another category of leaf traits that 
may be of particular interest for prediction from spectra. These 

traits include foliar protein, starch, and chlorophyll content. 
There is a long history of using reflectance spectroscopy to 
detect the concentration of chemical constituents in dried and 
fresh foliar material in the laboratory, using simple, stepwise, 
and PLSR methods (Curran et al., 1992; Martin and Aber, 1997; 
Ustin et al., 1998; Merzlyak et al., 2003; Kokaly et al., 2009; Ely 
et al., 2019). All such models rely on the basic principle that 
the depth and magnitude of spectral absorption features asso-
ciated with molecular bonds should vary in proportion to the 
concentration of that chemical (Curran, 1989; Kokaly, 1999). 
For example, N–H bonds, common in proteins, have vibra-
tional absorptions at ~1980  nm and ~2130–2180  nm, with 
harmonic and overtone frequencies in the NIR and SWIR 
regions (Curran, 1989; Kokaly, 2001). Therefore, a model for 
proteins should rely heavily on the reflectance in these key 
wavebands (Curran, 1989). This should, in theory, make bio-
chemical traits easier to model than structural or physiological 
traits, as the latter are the consequences of multiple chemical 
and structural constituents within the sample of interest, and 
thus direct correlative models are often confounded (Serbin 
and Townsend, 2020).

A number of considerations still need to be made in order 
to successfully construct a PLSR model for a biochemical 
trait. It is prudent to consider both the range and resolution 
of wavebands measured by the spectroradiometer used for 
data collection. The wavelength range should be such that the 
crucial wavebands are measured, and the resolution should be 
high enough to distinguish bond-specific absorption peaks 
from other peaks of similar bond types (Yoder and Pettigrew-
Crosby, 1995). Furthermore, it is important to be aware that 
some chemical types may be masked by absorption associated 
with other chemicals with a common bond. For example, 
O–H bonds, the bond type in water, have strong absorption 
features at ~970, ~1200, ~1400, ~1450, and ~1940 nm (Curran, 
1989). The O–H bond is also common in cellulose, starch, and 
lignin. Since most fresh plant material is highly water saturated, 
a model which leverages the O–H bond absorption features to 
predict compounds other than water may be confounded if the 
samples vary in their hydration. In addition, the strong dom-
inance of water on the SWIR section of the electromagnetic 
spectrum may mask or obscure other subtle absorption features 
in the region (Curran, 1989). Drying of sample material will 
limit the influence of water’s absorption features on spectra; 
however, this is a destructive step that may be impractical for 
paired spectra and biochemical sampling, which typically relies 
on flash-freezing samples for subsequent biochemical analysis.

The time of day of sampling is another consideration, espe-
cially for biochemical traits for which the foliar concentration 
will vary throughout the day as the plant mobilizes and redis-
tributes certain types of biochemical compounds (Nozue and 
Maloof, 2006). For example, sucrose and starch content will 
be relatively low at dawn but will increase over the course 
of the day, peaking between solar noon and the end of the 
photoperiod, depending on the species and environmental 
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conditions (Sicher et al., 1984; Hendrix and Huber, 1986). This 
time of day effect must be accounted for when planning spec-
tral data collection, and can be leveraged to maximize differ-
ences in foliar biochemical concentration in order to fill the 
trait space (Fig. 2).

Tutorial for performing PLSR

Here we provide general guidelines and typical methods 
that can be applied to leaf-level PLSR spectra–trait mod-
elling efforts, with regard to data preparation, model de-
velopment and validation, and interpretation of results. We 
provide these guidelines in order to improve the robust-
ness of the developed PLSR, but also, critically, to enable 
easier cross-comparison of published PLSR modelling re-
sults across datasets, teams, projects, and biomes. The detailed 
steps for building a PLSR model will vary for a number 
of reasons, including the trait of interest, wavelength range 
of the spectra (e.g. VIS to NIR versus VIS to SWIR), and 
the goal of the modelling effort; thus, it is not possible to 
provide a single generalized example to cover all applica-
tions. To illustrate our suggested approach, we provide the 
‘spectratrait’ package (Supplementary Protocol S2 at JXB 
online), written in the open-source R statistical program-
ming language, which contains examples that utilize publicly 
available leaf spectra and trait data (see Supplementary Table 
S1) provided through the Ecological Spectral Information 
System (EcoSIS; https://ecosis.org/). We provide a tutorial 
(Burnett et  al., 2020) to cover what is presented graphic-
ally in Fig. 1 through a GitHub repository (https://zenodo.
org/record/4730995). The specific example R script sum-
marized here is: ‘spectra-trait_reseco_lma_plsr_example.R’, 
with a full illustration of the results available online (https://
rpubs.com/sserbin/736861). Users should begin with the 
README file available in the GitHub repository, which 
explains the package and illustrative vignettes provided. 
Before using the code on their own datasets, users should 
ensure that spectral and trait data have been curated in ac-
cordance with the recommendations provided above.

Data import and preparation

While specific to the examples here using EcoSIS datasets, data 
preparation and import into the chosen statistical modelling 
environment is a necessary early step (following data quality 
control). In the case provided here, we first define the required 
libraries and other options (Steps 1–3), including setting up 
output directories, prior to data import. Step 4 imports the ex-
ample dataset from EcoSIS using the EcoSIS application pro-
grammer interface (API), using each dataset’s API key with the 
‘get_ecosis_data.R’ function. Steps 5 and 6 show an example of 
preparing data for fitting and removing missing or bad datasets. 
This includes the selection of the wavelengths to use in model 

fitting, in this case 500–2400 nm. Individual researchers should 
determine the level of data curation and preparation necessary 
for their specific case, as well as the appropriate wavelengths 
to use.

Data transformation

Although PLSR does not rely on ‘hard’ distribution assump-
tions (Goodhue et al., 2012; Sawatsky et al., 2015), better results 
are obtained when the trait distribution is close to normal or 
is not significantly skewed. Several methods can be used to 
inspect the normality of the trait data, including histograms, 
Q–Q plots, and normality test methods; we use a histogram for 
illustration in the example code (Step 7). If the histogram does 
not follow a symmetrical distribution, corresponding trans-
formations should be applied to improve its symmetry before 
commencing PLSR. For example, a log transformation can 
be used on data with a long tail on the histogram (i.e. fewer 
measurements at large trait values). If the value zero occurs 
in a variable, the fourth root transformation is a good alter-
native to the logarithm (Wold et al., 2001). While we suggest 
transforming the trait data if needed, we do not recommend 
transforming leaf-level spectral data because the reflectance of 
all wavelengths is collected in the same percentage unit (i.e. 
1–100%) and the use of a leaf clip minimizes environmental 
interference, meaning that transformation to improve the data 
distribution is not required.

Data splitting for PLSR calibration and validation

Early PLSR spectra–trait modelling efforts relied solely on 
internal cross-validation to evaluate model performance 
(Townsend et  al., 2003). More recently, we have instead ad-
vocated splitting the full dataset into a model training (cali-
bration) dataset and an out-of-sample validation dataset to 
provide a more robust and accurate evaluation of prediction, 
particularly for large datasets (e.g. Serbin et  al., 2014). The 
commonly used cut-offs for calibration versus validation vary 
between 60% and 80% (Meacham-Hensold et al., 2019; Serbin 
et al., 2019; Wu et al., 2019). In our example, Step 7 illustrates 
one way of splitting the data. We use 80% for PLSR calibration 
in our demonstration (i.e. 80% of the spectra–trait data pairs). 
Figure S1 in Supplementary Protocol S1 shows the resulting 
calibration and validation trait distributions based on the split 
criterion provided. While it is not possible to define all the 
potential experimental variables that an investigator may use 
to guide data splitting, such as treatment, species, and spatial 
range, it is useful to consider one or more key factors that 
help to define the variation in datasets. For example, ‘species’ 
is accounted for in our main example, while other examples 
provided show other variables, such as the NEON (National 
Science Foundation’s National Ecological Observatory 
Network) example which partitions the data based on an add-
itional variable ‘domain’ corresponding to specific NEON 
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domains (R script: spectra-trait_neon_lma_plsr_example.R). 
During the splitting procedure, the 80/20%, for example, is 
applied to each bin variable, such as species. Similarly, experi-
mental treatments should also be carefully considered if the 
numbers of collections under each treatment or species are 
significantly different from each other. The ultimate goal of 
these considerations is to prevent fewer observed species/do-
mains/treatments from being ignored or under-represented in 
PLSR calibration.

Once the data have been split for conducting PLSR, 
formatting may be needed in order to use the data with the 
chosen pls package. For example, we illustrate this formatting 
requirement in Step 8 where we define the PLSR dataset as 
required by the package. We also show the calibration and val-
idation spectra data side-by-side in Fig. S2 in Supplementary 
Protocol S1.

Data permutation to determine the optimal number of 
components

Selecting an optimal number of components (NoC) is critical 
for the performance of PLSR. Selecting an erroneously small 
NoC can result in underfitting of the spectra data and poor 
model performance. On the other hand, overfitting the model 
by selecting too many components can yield a model with 
erroneously high training statistics but will more than likely 
lead to low model performance, particularly when applied to 
new observations. This is because overfitting will tend to fit 
the model to spurious noise in the higher order components. 
If there is a lot of error or unexplained variance in the data, 
or if there is the need to link numerous different observations 
or data types together (Wolter et al., 2008), modelling can re-
quire tens of components. However, our experience is that 20 
components is a typical maximum for fitting basic, leaf-level 
spectra–trait models (Fig. S3 in Supplementary Protocol S1 
). To optimize the process of selecting the NoC, we advocate 
data permutation to identify the optimal NoC and provide the 
ability to statistically select the smallest necessary to optimize 
prediction (e.g. Serbin et al., 2014; Ely et al., 2019). In our ex-
amples, we provide three methods that illustrate ways to per-
mute and select the optimal NoC.

To perform a data permutation, a sufficient number of 
PLSR models (20 in our example) need to be built for each of 
a series of NoC. The averaged predictive performance of these 
PLSR models is used to determine the optimal NoC. For each 
model, a subset of samples is randomly selected from the cali-
bration data to train the model, with the rest used for model 
validation. Here we refer to these as ‘jackknife calibration’ and 
‘jackknife validation’ samples to differentiate them from the 
PLSR calibration and validation subsets. Step 10 shows one 
of the ways to conduct the data permutation. In our example, 
we used 70% of the calibration subset for jackknife calibra-
tion and 30% for jackknife validation, an approach similar to 
Serbin et al. (2014) or Couture et al. (2016). Following this, the 

predicted residual error sum of squares (PRESS) can be calcu-
lated for each NoC across all PLSR model ensemble members 
(Fig. S3 in Supplementary Protocol S1). We do not recom-
mend low data splits for jackknife validation, such as 10% (e.g. 
Asner et al., 2014), as this may lead to overfitting due to an in-
ability to statistically differentiate models with larger numbers 
of components, particularly with very large calibration datasets.

Typically, the PRESS plot has a V-shape (decrease then in-
crease) from a low to high NoC, and the optimal NoC is in-
dicated by the minimum PRESS (e.g. vertical blue line in Fig. 
S3 in Supplementary Protocol S1). However, this V-shape is 
not universal. Patterns such as a slowly decreasing PRESS at 
larger NoC can be obtained when a high variance is present 
in the spectral data. Despite the decreasing PRESS, ‘overfitting’ 
may already exist in PLSR with a large NoC, and diminishes 
the applicability of the model to new datasets. In this case, a 
threshold can be set to stop the NoC selection at which the 
change of PRESS becomes insignificant, for example if the 
change of PRESS from n to n+1 NoC is <5%, or a t-test on 
PRESS does not show significant differences between n and 
n+1 (P>0.05). In the example code, we demonstrated this with 
a t-test. Starting from the first NoC, the t-test is conducted be-
tween any two consecutive NoC, and stops when the P-value 
is >0.05.

Final PLSR model calibration and validation

Following the selection of the optimal PLSR NoC, a final 
model should be calibrated using the previously generated cali-
bration data subset. For more detail, see the information in the 
R plsr.out object for PLSR model features; details for param-
eters can be found in Mevik et al. (2015). In our example, this 
is shown in Step 11 where we refit the model with the calibra-
tion (training) data to define the final model coefficients.

Assessment of the final calibration model can be done in 
two ways. First, leave-one-out cross-validation (LOO-CV), 
sequential or ‘Venetian blinds’ cross-validation can be used 
to internally assess the model training fit. However, this 
will probably over-represent the actual model perform-
ance. A more appropriate assessment is to utilize the out-
of-sample validation dataset as validation of the model 
performance. This approach is generally effective when 
both the calibration and validation data are representative 
of the trait space. For example, we show the assessment of 
the LMA model using our withheld validation data across 
increasing PLSR model components up to the final optimal 
number, 11 (Supplementaty Fig. S4 in the GitHub reposi-
tory). We show both how the root mean square error of 
prediction (RMSEP) decreases and how the coefficient of 
determination (R2) increases with successive components to 
a final RMSEP of 11.7 g m–2 and R2 of 0.86. It is, however, 
important to note that overestimation of model perform-
ance is still a potential issue in our proposed approach as the 
calibration and validation subsets are not fully independent. 
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Additional steps may be considered to reaffirm the perform-
ance of the final PLSR. For example, an extra independent 
dataset can be used to avoid model overestimation and also 
test its generalizability to new observations. While this could 
seem unnecessary, often the overall goal of PLSR modelling 
is to develop models that can be used to estimate traits for 
new samples (e.g. Serbin et al., 2019) so this additional step 
may be important in some cases.

As we show in Fig. 4, there are various metrics to assess 
model performance. These include the R2, RMSEP, and the 
percent RMSEP (RMSEP as a percentage of the trait range). 
In Step 12 of our example, we further illustrate a way to 
evaluate model fit through both calibration and validation fit 
statistics and assessment of residuals. For example, Fig. S5 in in 
Supplementary Protocol S1 provides a side-by-side assessment 
of the LMA model performance for the calibration and valid-
ation of this model using the withheld dataset. The calibration 
and validation residual plots are provided to help visually assess 
any significant bias or skewness in the model fit. For example, 
when reviewing the residuals, if a strong non-linear trend is 
found it may indicate that data transformation (e.g. square root 

transform, Serbin et al., 2019) may be required. In this specific 
example, we see that the model R2 is similar for the calibration 
and validation results, while the RMSEP increased slightly for 
the validation data, from 12.84 g m–2 to 13.68 g m–2.

An additional step that is often useful for assessing PLSR 
models is to explore the final model coefficients and vari-
able influences on projection (VIPs; Fig. S6 in Supplementary 
Protocol S1), and this is shown in Step 13 in the tutorial ex-
ample. In this case, we plot the final 11 component PLSR re-
gression coefficients and the VIPs across the same wavelength 
range. Here we see that the areas of highest contribution to 
the estimation of LMA in this dataset tend to occur in the vis-
ible wavelengths, followed by portions of the SWIR regions, 
with a slightly lower contribution from the NIR bands. We 
can also see that the resulting coefficient plot shows reason-
ably smooth values across most of the spectrum, with some 
areas that have a higher frequency variation related to regions 
of spectrometer detector overlap where the signal-to-noise is 
often lower, or other features that may be related to measure-
ment artefacts. The coefficient plot can also be used to iden-
tify spectral features related to specific constituents. Known 
spectral peaks can be retrieved and used to give a possible 
explanation of why the model successfully predicts the trait 
of interest (Dechant et al., 2017). Typically, a high degree of 
high-frequency variation in a coefficient plot may indicate an 
overfit model (Asner et al., 2014).

PLSR model uncertainty analysis

In our example, we have illustrated how to prepare, define op-
timal components, fit, and evaluate a PLSR model using cross-
validation, permutation analysis, and independent validation. 
However, it may be of interest for researchers to understand 
the inherent uncertainties in their model when predicting 
new values based on leaf spectra. This can be achieved by 
deriving model predictive uncertainty via a permutation ana-
lysis (Serbin et al., 2014; Couture et al., 2016; Ely et al., 2019; 
Wu et al., 2019). Most commonly this is done by: (i) generating 
PLSR ensembles through permutation (e.g. jackknife or boot-
strapping); (ii) collating these results into a matrix of possible 
models; (iii) applying the ensembles to new observations to 
derive a distribution of fitted values for each observation; and 
then (iv) summarizing the fit uncertainty given the variance 
around each estimated value. In addition, once the model en-
sembles are generated, they may be used with the original 
final model to estimate new trait values and the uncertainties 
around these estimates employing the permuted model coeffi-
cients (e.g. Serbin et al., 2019).

There are various ways to conduct permutation analysis 
(Singh et al., 2015; Couture et al., 2016; Schweiger et al., 2018) 
but, in this case, we followed a basic jackknifing approach. Step 
14 in our example illustrates the internal jackknife feature of 
the PLS package in R, which we used to develop the PLSR 
model ensembles for the uncertainty assessment. The resulting 

Fig. 4.  Selected PLSR model outputs. (A) Jackknife regression coefficients 
showing the model uncertainty based on the calibration data. The 
magnitude of the coefficients in the positive or negative direction provides 
an assessment of the strength of the contribution of wavelengths or 
wavelength regions to the prediction of the leaf trait, while coefficients 
close to zero indicate a very low contribution of that wavelength to 
prediction. PLSR model coefficients are also useful to diagnose for 
contributions of other constituents (Dechant et al.,2017) based on known 
absorption features (Curran, 1989). (B) Variable influence on projection 
(VIP) indicates the importance of a specific wavelength for predicting the 
trait of interest, here LMA. A VIP >0.8 typically indicates a variable of high 
importance to model prediction (Wold et al., 2001). Together, these graphs 
help the user to understand a PLSR model, critical wavelength regions 
for prediction, and possible covariance with other traits based on known 
absorption features (e.g. Serbin et al., 2014) or by plotting coefficients and 
VIPs of several traits together to explore similarity (e.g. Ely et al., 2019).
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jackknife coefficients are shown in Fig. S7 in Supplementary 
Protocol S1. As expected, the general shape of the jackknife 
coefficients across the spectral range is similar to the full model 
(Fig. S6 in Supplementary Protocol S ), but also shows the vari-
ance in coefficients related to the resampling of the full calibra-
tion data that are used to quantify and represent the uncertainty 
of the PLSR model. Using the full model and jackknife co-
efficients, we then provide the mean estimate as well as both 
the 95% confidence and prediction intervals of the estimated 
LMA values in the validation dataset. We show the estimated 
uncertainty in Fig. S8 in in Supplementary Protocol S1, which 
demonstrates the standard observed versus predicted presenta-
tion of the results, with R2, RMSEP, and %RMSEP, as well as 
the prediction interval around each validation data point. This 
is similar to that provided by previous studies (Couture et al., 
2016; Ely et al., 2019; Wu et al., 2019) and is a recommended 
way to present overall model predictive performance in a sci-
entific paper.

Final steps

After fitting the model and estimating the inherent uncertainty, 
the last step is to output or save the model, and fit statistics, 
diagnostics, final model coefficients, and permutation coeffi-
cients. Importantly, the model coefficients and permutation 
coefficients represent the resulting model and the resulting 
model with uncertainties, respectively. These coefficients are 
the main features used to estimate traits from new leaf spectral 
observations. We illustrate saving PLSR results in Steps 15 and 
16 in the example.

Common pitfalls using PLSR when 
predicting plant traits

In this article we have highlighted the uses and applications of 
PLSR modelling in the context of estimating leaf traits with 
high-resolution leaf-level spectroscopy data. While this method 
has proved useful in a range of applications from forestry, agri-
culture, plant biology, and remote sensing, it is not the only 
method available—and is not always the best method—for 
building links between plant functional properties and re-
mote sensing signatures. For example, PLSR can suffer from 
a strong influence from outliers, even if the fraction of erro-
neous or otherwise questionable data is small relative to the 
total number of observations (Wold et  al., 2001). Moreover, 
as stated here and elsewhere (Schweiger, 2020), PLSR, like 
all empirical methods, requires that the training dataset en-
compass the range of expected values for a trait to which the 
model will be applied otherwise it will probably underper-
form at the extremes of the distribution (Fig. 2). As such, it is 
recommended that researchers who wish to develop models 
for operational applications, or across diverse vegetation, focus 
on building large datasets that cover the trait space they expect 

(e.g. Serbin et al., 2019). This, however, can present a significant 
challenge as the cost and effort to develop a model for any 
one location or experiment can be large when factoring in 
logistical costs for data collection. Therefore, we recommend 
that datasets such as those available from EcoSIS be leveraged 
whenever possible to expand the training dataset to encompass 
more expected variation in spectra and trait observations. Past 
efforts suggest that this is possible (e.g. Serbin et al., 2019), but 
additional research into the ease of combining trait and spec-
tral collection methods, instruments, and other conditions is 
still required to fully understand the generality of PLSR ap-
proaches across large and diverse datasets. Furthermore, other 
issues can impact the performance of PLSR modelling such 
as noisy spectral data, particularly in the regions of known ab-
sorption features of certain traits such as the SWIR region; this 
is common with the use of some fore optics such as integrating 
spheres (e.g. Yang et al., 2016).

Another pitfall of PLSR modelling is the potential to overfit 
the training data. PLSR modelling depends on the decom-
position of the original data into a number of orthogonal axes 
equal to the number of different components selected in the 
modelling step. This is a critical step to develop the fewest 
number of different rotations or orthogonal axes needed to 
optimally model the dependent variable(s) [Y] using the pre-
dictor matrix [X]. This makes this method more suitable than 
linear regressions by reducing the number of variables used in 
the model. However, in this step, it is possible to overfit the 
PLSR model if too many components are chosen. In that case, 
the model will start to use the noise as if it were structural in-
formation to explain the variation in Y. This effect is similar 
to trying to fit a linear model with as many parameters as the 
number of observations. In that case, the model will describe 
exactly the observation but the parameters will not be signifi-
cant. When this happens, it is possible to overtrain the model 
with a very large number of components. The more compo-
nents included in the model, the more likely it is that spurious 
noise is included. For most plant traits, <20 should be all that 
is required. As a result of the overfitting step, the training may 
suggest a performing model but its evaluation on the validation 
dataset gives a lower prediction accuracy. We recommend that 
researchers follow a strict component selection protocol (see 
provided example scripts) and explore outlier removal prior 
to model training. This will help ensure models are not overfit.

Reporting and applying PLSR models to 
new datasets

Finally, we recommend practices for reporting PLSR models 
that aid interpretation of results and model reuse. PLSR is a 
robust method for inferring leaf properties from spectro-
scopic measurements and for reducing the risk of overfitting. 
However, the way in which PLSR is carried out and the choice 
of the number of components is of paramount importance. 
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Therefore, the chosen method should always be carefully de-
scribed, and the number of components should be as parsimo-
nious as possible so other researchers can use the model with 
new data while having the same predictive power. The use of a 
validation dataset to evaluate PLSR is also very important for 
reducing the risk of overestimating the quality of the model. 
The RMSEP and R2 are the recommended indicators of per-
formance and should both be reported. %RMSEP is useful 
for facilitating comparisons between traits for which the data 
ranges span different scales. Figure 5 provides an example of a 
figure and legend to report the performance of a PLSR model. 
Model reporting should also include the number of points of 
the validation dataset (n) and the NoC. Other metrics and fig-
ures could also be added if needed, such as the mean abso-
lute error (MAE) which is less sensitive to outliers than the 
RMSEP. The histogram of the residuals can also be interesting 
to report as it contains information on the outliers and under- 
versus overprediction. (The code to produce those figures is 
provided in the GitHub repository.) However, we suggest al-
ways using the RMSEP and R2 as a minimal basis for all PLSR 
descriptions to allow direct comparison between models.

In order for other researchers to utilize an existing PLSR 
model with new datasets, the coefficients of the PLSR model, 
the intercept, and any transformations of the variable should 
also be published. For example, GitHub (e.g. https://github.
com/serbinsh/SSerbin_etal_2019_NewPhytologist/releases/

tag/1.2.1) or the Ecological Spectral Model Library (EcoSML.
org) model aggregator portal can be used to provide access to 
the final PLSR models.

With the information reported above, potential users can 
determine if an existing model is suitable for their research 
needs. However, special consideration is needed to determine 
if the PLSR model can be applied in their environment and 
for their specific samples. First, it is always good practice to 
assess the quality of the model using at least 20 new samples. 
Second, it is important to note that the models should be ap-
plied using the same protocol and the same type of equipment 
as used in the original model development. An attractive use 
of leaf-level PLSR models would be to apply them on a larger 
scale using other sensors such as multispectral or hyperspectral 
cameras that can be deployed in unoccupied aerial systems, 
aircraft, or satellite platforms. Such an aim is not straightfor-
ward, mainly because the 3D position of the leaves and their 
light environment are not uniform between samples as they 
are for proximal spectral data collection, and this means that 
these aspects must be accounted for when developing a canopy 
model. In addition, sensor characteristics such as the band-
width and number of wavebands may vary between instru-
ments. As a consequence, the application of a PLSR model 
built at the leaf scale to canopy spectral data can lead to a 
significant bias (Al Makdessi et  al., 2019). Instead, the struc-
ture of a canopy and sensor characteristics must be accounted 
for when building a PLSR model. In practice, this means that 
such a model should be built and applied at the canopy scale, 
rather than building a leaf-level model and applying it at the 
canopy scale (e.g. Burnett et al., 2021). A detailed discussion of 
these points is outside the scope of this manuscript, although 
for the interested reader we provide an example of a canopy-
scale application of our approach using a dedicated model (see 
Supplementary Table S1). Lastly, the PLSR model should not 
be applied on new samples outside the range of the original 
dataset used to calibrate the PLSR model (Fig. 2B).

In conclusion, this practical guide to PLSR models will en-
able researchers to better understand and use this powerful 
technique for predicting leaf traits from leaf-level spectral 
data—both for building new spectra–trait models and for ap-
plying existing models to new spectral data. The detailed tu-
torial examples can be used as a guide to achieving optimal 
results when building new models, which will, in turn, facili-
tate a higher degree of confidence in applying these or other 
published models to new spectral datasets, and leveraging ex-
isting datasets to examine leaf traits.

Supplementary data

The following supplementary data are available at JXB online.
Table 1. Details of the R scripts provided in our GitHub 

repository.
Protocol S1. Illustration of our PLSR tutorial.

Fig. 5.  Example observed versus predicted plot with prediction 
uncertainty. Final validation plot resulting from model validation using the 
validation dataset. The relationship between observed (measured) and 
predicted trait values (from PLSR) is shown, with the dashed black line 
indicating a 1:1 relationship. The grey error bars are the 95% prediction 
interval around each estimated LMA based on the jackknife analysis (Fig. 
4). Validation R2, RMSEP (root mean squared error of prediction), and 
%RMSEP (RMSEP as a percentage of the range of observed trait values) 
are shown.
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Protocol S2. A compressed zip file containing the ‘spectratrait’ 
R package (spectratrait-v1.0.4.zip); PDF file detailing the con-
tents of the zipped supplementary R package.

Supplementary figures referenced in the manuscript are in-
cluded in the vignette and as outputs of the R script.
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